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Abstract
We have performed a systematic analysis of the numerical errors contained
in the databases used in cluster expansions of multicomponent alloys. Our
results underscore the importance of numerical noise in the determination of the
effective cluster interactions and in the expansion determination. The relevance
of the size of and information contained in the input database is highlighted. It is
shown that cross-validatory approaches by themselves can produce unphysical
expansions characterized by non-negligible, long-ranged coefficients. A
selection criterion that combines both forecasting ability and a physical limiting
behavior for the expansion is proposed. Expansions performed under this
criterion exhibit the remarkable property of noise filtering. A discussion of the
impact of this unforeseen characteristic of the cluster expansion method on the
modeling of multicomponent alloy systems is presented.

1. Introduction: numerical noise and convergence of cluster expansions

Numerical noise in first-principles input data arises from the finite convergency of several
computational quantities, such as the k-point mesh, the size of the basis (e.g. energy cut-
off in plane-wave-based methods) and zeroing in the forces of atomic positions not fixed by
symmetry in the unit cell, among others. This calculation uncertainty can be bound by well
known approaches, i.e. using special sets of k-points, smearing mechanisms for the Brillouin
zone integration and, of course, the systematic increase of all the relevant parameters until the
physical quantity of interest does not vary within certain limits.

Naturally, increasing the accuracy of the first-principles data comes at the price of an
increased computational time. For simple systems, characterized (in the sense of a cluster
expansion) by few ordered structures with small unit cells, this might be of little importance.
However, relevant materials, either from the fundamental or the applied point of view, are
usually multicomponent with large unit cells and characterized by complex interactions, i.e.,
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many ordered structures are needed to extract the effective cluster interactions (ECIs). For these
materials, arbitrarily increasing the accuracy of the first-principles data is an important issue.

The pertinent questions are, in any case, if a higher accuracy in the first-principles database
directly translates into more precise cluster expansions and, if so, how this can be gauged.
Answering these questions is important in order to find a positive trade-off between the
computational expense and the physics embedded in the ECIs. This is one of the aims of
the present contribution.

Closely related, on the other hand, is the issue of how to determine a converged expansion.
For the enthalpy of formation several routes have been proposed over the years [1–4]. In
essence, all these strategies rely on the following aufbau principle: a cluster expansion is
proposed in terms of an initial database. This cluster expansion is then used for a ground-
state search. If new ground states are predicted, then their structures are included in the input
database, and a new cluster expansion is constructed. The new expansion usually encompasses
a new set of cluster figures and/or different values of the ECIs. This process is repeated until no
new ground states are found [1–3]. However, for physical quantities others than the enthalpy
of formation, this scheme cannot be fully applied. Consider, for example, the magnetization
in binary alloys or the bandgap in semiconductor compounds: in general, there is not a direct
(simple) correlation between extrema in such quantities and the ground states in the system.

In consequence, much effort has been put into estimating the residual of a given cluster
expansion and several schemes have emerged as a result. Such methods can be roughly divided
into two categories. On one hand are the approaches that assess a cluster expansion by its
predictive ability, that is, by how accurately a given expansion predicts data not included in the
fitting set [1, 4]. On the other hand are the methods that ascertain the quality of an expansion
by judging limiting cases, for example the fully random alloy [4]. Clearly, the latter is a
physical, perhaps more difficult, approach, whereas the former faces the problem via statistical
analysis and, therefore, it is more amenable for automated calculations. This explains the recent
popularity of expansion-selection schemes based on the minimization of the cross-validation
estimate of the prediction error (see the appendix). In a sense, the prediction error contains a
measure of the expansion, i.e. how much of a given cluster expansion is missing. Expansions
with small prediction and fitting errors are believed to be ‘more complete’ and therefore to
provide a ‘better’ (more accurate) description of the underlying physics.

In what follows, we shall see that cluster expansions with very low prediction errors do
not necessarily imply a better physical description of the system. Moreover, we will show that
in order to produce meaningful expansions it is necessary to account for the numerical noise of
the input data—a factor altogether neglected in previous analyses of the cluster expansion [5].
As a result, we will propose a selection criterion for cluster expansions that encompasses the
physical limiting behavior together with forecasting ability.

Our strategy relies on the study of archetypical systems for which the underlying
interactions (the ECIs) are known by construction, that is, they are defined a priori. In all cases,
we calculate a physical quantity of interest, e.g. the enthalpy of formation, for a set of input
structures. In order to develop systematics, we manipulate the prototype database by adding
different levels of Gaussian noise. The resulting databases—characterized by the variance σ 2 of
the Gaussian noise—are then analyzed using the variational approach to the cluster expansion
(VCX) and a large pool of cluster figures, from which the relevant interactions are selected.
Undeniably, this approach provides an advantageous test bed for (cluster expansion) method
developing, since the obtained expansions can be cross-checked against the ‘control system’,
that is, the exact ECIs and cluster figures.

The rest of the paper is organized as follows: section 2 is devoted to introducing the
main theoretical tools used here, i.e. the cluster expansion method and its variational approach
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(the VCX), together with statistical concepts such as model and subset selection. The prototype
systems are presented and discussed in section 3. We close this paper with the conclusions in
section 5.

2. Theory and methods

The interaction of the cluster expansion community with statisticians has resulted in such a
positive thrust for the first-principles thermodynamics of multicomponent systems [1–3, 6, 7].
In this section, we aim to review, albeit briefly but always within the context of cluster
expansions, statistical concepts such as model and subset selection, model combining,
etc. These concepts are extremely useful in placing the cluster expansion method for
multicomponent systems as a problem of subset selection in linear models. More importantly,
as we shall see, such concepts are instrumental in determining meaningful (physical)
expansions.

2.1. Cluster expansion method as a variable model selection problem

2.1.1. Cluster expansion method. Consider a crystal of N sites characterized by the
configuration vector of all occupation lattice sites s� = {s1, s2, . . . , sN }. The occupation
variable si is +1 if lattice site i is occupied by an atom A or si = −1 if its occupied by an
atom B. Many physical properties of materials depend on the (atomic) configuration degrees
of freedom s�. This is the case of the formation enthalpy in metallic alloys or the band-gap in
semiconducting compounds.

The seminal idea of the cluster expansion method (CE) is to propose a linear relationship
between a physical property F and some function of s� [8–10],

F =
∑

α

fα�α(s�), (1)

where the expansion coefficients, fα , are given by the scalar product between F and the
expansion (cluster) functions �α,

fα = 〈F,�α〉. (2)

When the cluster functions �α are expressed in terms of orthogonal discrete Chebyshev
polynomials, it can be shown that, first, their configuration averages are the well known (and
widely used) multisite correlation functions [11], and, second, they constitute a complete and
orthogonal basis in the configurational space [12, 13].

Accounting explicitly for the point-group symmetry of each cluster figure α allows us to
rewrite equation (1) as

F(s�) = J0 +
∑

α

Dα Jα�α(s�), (3)

where Jα are the effective cluster interactions associated with cluster figures α. The numbers of
symmetry-equivalent clusters having identical ECIs are represented by Dα . We have explicitly
separated the configuration invariant term J0 so that the sum in (3) runs over all non-empty
clusters.

Some remarks are in order. (a) The orthogonality is, of course, a matter of convenience
but the completeness of the basis functions is fundamental to describe any function F of
the configuration. (b) Once the corresponding expansion coefficients Jα are determined,
we can easily compute F for any configuration s of the system, including all ordered and
disordered states. (c) In a rigorous manner, the determination of an infinite number of expansion
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coefficients (i.e. the ECIs) requires a database containing an infinite set of configurations
(observations). The viability of equation (3) resides in the notion that configurational degrees
of freedom and the crystal structures in alloys are strongly correlated and thus amenable to
be described by small number of parameters [7]. Remarks (a) and (b) represent the strength
of the method. Its importance, however, is embedded in (c): the expansion can be very well
represented by selecting the few most relevant terms.

Note that we favor the term ‘selecting’ over ‘truncating’ since the latter gives the (wrong)
impression that a convergency radius can be defined for expansion (3), an assumption that is
unwarranted from the theory. Certainly, early truncation can lead to gross errors and several
examples have been documented in the past [14–16].

Alternatively, hierarchical approaches, where cluster figures are included in the expansion
together with all their subclusters, have been proposed recently [17, 18]. Most of these
hierarchical approaches have their roots in concepts from the cluster variational method
(CVM) [19–21], a technique to construct a hierarchy of consistent approximations to the
configuration entropy of lattice systems [22, 23]. So far, however, it is not clear if these
approaches à la CVM lead to better expansions or convergence—see, for example, the clear
account of Blum and co-workers [3].

Modern approaches to the cluster expansion method in multicomponent systems are
based on the definition of a pool of cluster figures that is used in the evaluation of
equation (3) [2, 3, 6, 24]. A distinctive characteristic of this pool is the lack of a design
principle. In other words, the cluster pool contains as many as possible pair and many-body
cluster figures up to a given number of vertices and a maximum average bond length (or vertex
distance). The elements of the pool can be identified by an index p that runs from 1 to the
total number of cluster figures Nc. A pool of cluster figures with these characteristics offers an
unbiased approximation to equation (3):

F(s�) ≈ J0 +
Nc∑

p=1

Dp Jp�p(s�). (4)

2.1.2. Variable model selection. Posed in this way, it is clear that the cluster expansion
represents a special case of the model selection problem, where the standard form is

F = �V + ε, (5)

with � an n × Nc full-rank matrix of known constants (predictors), V a Nc vector of unknown
parameters, and the errors ε. Issues of model selection arise in many physical and statistical
problems that deal with a large number of observed variables [25]. Some of the most commonly
encountered problems involve the use of multiple-regression techniques, where it is often
desired to find a relatively simple function that models the collected data [26, 27].

On the other hand, it is often entertained that some of the components of V are zero.
In this case, model (5) is called the ‘full model’ and the process of selecting a subset model
from the 2Nc − 1 subset fits is called ‘variable model selection’ [26, 28–31]. The characteristic
of variable model selection is the huge number of candidate models to be considered. Even
restricting ourselves to small models, exhaustively evaluating the 2Nc − 1 possible subsets is
prohibitively expensive (for Nc = 30 there are ∼109 different subsets). Selection criteria based
on predictive error estimates obtained by intensive computing methods such as cross-validation
are very popular. Cross-validatory methods rely on splitting the data into two parts: one part
is used to determine the model (by some goodness-of-fit criterion) and the other is reserved for
validation. The rest of the paper will make intense use of the cross-validation scheme which is
further discussed in the appendix.
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In the cluster expansion method, many of the ECIs are expected to be zero. Therefore, we
could apply some of the statistical developments surveyed early to handle equation (4), with
the advantage of having a deterministic set of predictors (the cluster functions, �p or �α) that
embody the physics of the problem.

2.2. Unbiased cluster expansions

It is clear that aiming for cluster pools with large Nc increases the probability to have a good
(controlled) approximation to the correct model—i.e., the exact expansion is recovered when
Nc → ∞. However, setting cluster pools with large Nc confronts us with the predicament of
having to scan 2Nc −1 possible subset models. Even for moderate (typical) values of Nc = 30–
40, there are between 109 and 1012 different subset models.

Within this framework, Hart and co-workers [2, 3] have recently proposed an ingenious
method to select the relevant (leading) ECIs in expansion (4) by applying a genetic algorithm
(GA) to optimize the prediction error in a cross-validatory scheme. By selecting a small number
of cluster figures (NGA ∼ 5) out of a pool of several decades (Nc ∼ 50), Hart et al have cluster
expanded first-principles data for several alloy systems with very good prediction errors. Their
final selection contained cluster figures that, in general, do not comply with any of the popular
hierarchy or compactness criteria. So far, the application of the GA approach has been limited
to many-body cluster figures (pairs were fitted separately with an ad hoc decay rule in [2, 3]).
However, the method is certainly applicable to all types of cluster figures, including pairs [32].

On the other hand, restricting the number of relevant terms in the expansion to NGA limits
the sampling of possible expansions (models) to

(
Nc

NGA

)
= Nc!

NGA!(Nc − NGA)! ,
that is, a small fraction of the space spanned by the Nc terms in the cluster pool. This translates
as an additional (undesired) factor of uncertainty in the cluster expansion (equation (4)). In
other words, confining the expansion to NGA terms naturally rules out the possibility that an
optimal expansion with more than NGA terms can be found. Of course, a systematic increase
of NGA → Nc certainly would overcome this limitation, but a numerical overhead associated
with enlargement of the search space needs to be considered.

We have recently proposed a variational approach to the cluster expansion (VCX) that is
capable of handling the entire pool of cluster figures in a very efficient numerical way. The
VCX combines both model selection and model averaging, where the subset selection (cluster
expansion) is driven only by the nature of the observation database [6, 24].

Both the GA and VCX methods provide unbiased cluster expansions. We refer the
interested reader on the GA to the excellent accounts of Hart and co-workers [2, 3], whereas
we shall discuss the VCX in detail next.

2.3. Variational approach to the cluster expansion method: subset selection and model
combining

Keywords for current methodologies to the cluster expansion in multicomponent systems
are selection and forecast. All of the current methods fall in the category of variable
model (subset) selection, namely, a single expansion is chosen and then used to make
predictions in the configurational space or to calculate the finite-temperature properties of
the system [14, 15]. This is true whether the selection is performed on biased (e.g. ad hoc
assumptions on the compactness of the expansion) or unbiased (e.g. the GA approach) grounds.
The predictive ability of the expansion, on the other hand, is now considered one of the most
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important attributes of an expansion and, in consequence, cross-validatory approaches have
been introduced into the selection scheme as a standard ingredient [1, 2, 6, 17, 18].

2.3.1. Model combining. Subset selection methods, however, do not guarantee a best
model (expansion) but instead they provide a useful ordering of the potential candidates. A
practical recommendation is to use a primary criterion to reduce the number of possibilities
to a manageable small size (best candidates) and then employ a second criterion (e.g. cross-
validation) to discriminate the best one for the final selection [33]. The recent development, in
the context of cluster expansions of multicomponent systems, based on extensive sampling by
GAs (to downsize the possibilities space) and the application of cross-validatory selection (for
the final selection), is a good example of this approach [2, 3].

Model averaging or model combining offers a different route based on averaging a variety
of plausible competing models which are considered with appropriate posterior probabilities
instead of having to choose a single best model [33, 34]. In this setting, as an example, we can
entertain two models of type (5):

F = a1 + b1x + ε1 (model I), (6a)

F = a2 + ε2 (model II), (6b)

where a1, a2, and b1 are constants and εi are errors (i = 1, 2). The posterior probabilities
are evaluated from the data as p1 and p2. There are now three possibilities. (i) We choose a
single model with the highest posterior probability (best prediction capabilities) and use it to
make predictions. (ii) We make two forecasts, one for each model in (6), and assign them the
corresponding probabilities. (iii) We combine the two predictions in (ii) into a single weighted
prediction. This latter forecast is effectively the outcome of the model averaging approach
and it has a lower mean square prediction error in the long run than either of the individual
forecasts [33]. Selecting (iii) implicitly suggests that there is a combined model for which

F = p1a1 + p2a2 + p1b1x + ε3 (model III). (7)

Model-combining methods that generalize the above ideas have been proposed in recent
years to deal with the uncertainty in model selection. The common characteristic of such
methods is that they avoid selecting one model by averaging or combining the (best) candidate
models [34]. The drawback in this type of approach is that the probabilities can be selected in
a more or less arbitrary way, i.e., parts of the model space may be over-represented or under-
represented by the analyst’s preferences. In section 2.3.2, we shall introduce a variational
approach that averages over all possible subset models, assigning them predictive weights based
solely on the nature of the database. As a consequence, no user-bias is introduced in the process
of model (expansion) combining and/or selection.

2.3.2. Variational approach to the cluster expansion method. The variational approach to the
cluster expansion (VCX) is constructed upon the all-important ideas of prediction ability and
subset selection but with the additional element of model combination. Before introducing the
mathematical description of the method, we would like to review the conceptual framework of
the VCX.

Consider the cluster expansion of equation (4) and let M be the set of all 2Nc − 1 possible
models (expansions). It is clear that for a given cluster pool there are only two options, either
the correct model M0 is contained in M or it is not. In both cases, a weighted average of
all the possible models (in the sense of section 2.3.1) will produce a final model with a better
(combined) forecast ability than any of the individual models [33, 34]. In the former case
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(when M0 ∈ M), for example, the weighting process would simply render model M0 with
unit probability; that is, the correct model (expansion) will be selected.

In order to make this approach practical, we still have to overcome the problem of the
enormous number of possible models, i.e. 2Nc − 1, for which weights have to be determined
based on the individual prediction ability of each model. We have sorted out this problem in
two steps. First, we cast the ECIs as functions of the weights and we lifted the normalization
restriction on the weights. Second, we optimized the distribution of weights by calculating its
variations with respect to the prediction error using cross-validatory techniques.

This approach has the additional advantage that backward elimination can be easily
implemented [26], i.e., a cluster pool of size Nc is decimated into a sub-pool of size Nc − 1 by
removing a cluster figure such that the prediction error for the Nc − 1 increases the least, and
so until the remains of the pool reach a prescribed size. Because of its variational nature, the
backward elimination (decimation) process either maintains or increases the prediction error.
In different words, for a given database, the combined expansion associated with Nc produces
better or equal forecasts than the combined model associated with Nc − 1.

Mathematically, our first step of making the ECIs dependent on the weights can be
accomplished by minimizing the penalized fitting error

�2
VCX = 1

n

[∑

�

(
F� −

∑

p

Dp J k
p�p(s�)

)2 +
∑

p

(wp Dp Jp)
2
]
, (8)

with respect to the J for a given set of weights wp (p = 1, . . . , Nc). Here n represents the total
number of observations, e.g., the number of input structures calculated by first principles.

Since the ECIs are now (implicit) functions of the weights, i.e. Jp = Jp(w) where w is
the Nc-component vector associated with the cluster pool, we can determine the distribution of
weights that minimizes the prediction error

∂�pred

∂wp
= 0. (9)

Both equations (8) and (9) are quite general conditions independent of the method chosen to
estimate the forecasting proficiency of the expansion. In the rest of this paper, we shall use a
cross-validatory leave-one-out scheme to estimate the prediction error. In this case, �pred takes
the following form:

(
�CV

pred

)2 = 1

n

∑

k

(
Fk −

∑

p

Dp J k
p(w)�p(sk)

)2
(10)

where the Jp(w) are determined without taking into account structure Fk (see the appendix for
more details).

Regarding equation (8), it is important to emphasize its generality in the sense that it does
not impose any restrictions on the range, compactness or decay behavior of the cluster figures
and interactions [16]. The particular form of the penalty term, however, is not unique and one
can entertain different functional forms, e.g. exp(wp Jp)

2. Since the prediction error �pred is the
objective function to be minimized, the specific form of J weight dependence is, in principle,
not critical. In practice, nevertheless, choosing one functional form over other might benefit
the numerical minimization process of �pred. In other words, depending on the specifics of the
system and on the physical quantity to be expanded, a particular form of the penalty term can
produce a better defined prediction-error landscape. We have learned that this is indeed the
case for the spin cluster expansion [35], where the configurational variables are the continuous
projections of the local spin [36].

In a practical implementation of the VCX method, one starts from a random choice of
weights wp, that are used to determine the corresponding set of Jp (minimizing equation (8)).
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This set of interactions are in turn used to evaluate the prediction error. Varying the weights
and evaluating the associated effective interactions, one can determine the global minimum of
the prediction error (equation (9)). This last step deserves special care and robust minimization
techniques have to be used. Once the minimization of �pred is achieved, the VCX method
renders large (small) values for the weights associated with non-relevant (relevant) cluster
figures. If the true expansion is contained in the pool of cluster figures, then it would be
characterized by a set of weights with small values. Using backward-reduction techniques, we
can decimate the initial cluster set, i.e. cleaning the expansion from the irrelevant cluster figures
until an optimal expansion is found [6].

3. Prototype systems

Assessing the reliability and robustness of a method for determining the effective cluster
interactions in a real system is very difficult for the simple reason that we do not know the
correct answer a priori. This very fact makes the comparison of different expansions, obtained
either by different methods or by the same one, also very difficult; i.e., the predictive power of
each expansion can be compared but, as we shall see later on, this is not enough to judge the
goodness of a cluster expansion.

In prototype systems, on the other hand, the defining interactions are known by
construction (i.e., they are defined a priori). Therefore, systematic analyses can be performed
and the robustness of the method can be gauged. In the case of cluster expansions, where
the predictors are deterministic (i.e. the cluster functions �p), the level of complexity is
defined by the number and strength of the expansion coefficients. Simple systems are therefore
characterized by few cluster functions with large coefficients, whereas complex systems have
many cluster functions with large and small coefficients. In this classification issues like
frustration (among the interactions) can be easily accommodated as a secondary level within
the two main categories.

3.1. Simple systems: few predictors with large coefficients

Consider a bcc-based system defined by the first three pair interactions and the more compact
three- and four-body effective cluster interactions as depicted in figure 1(a). We have named
the cluster figures as follows: the number of vertices in the figure is written first, then its rank
in that group according to the average bond length, e.g., 2P3 stands for the third pair while 4P1
for the first four-body cluster. The associated values of the ECIs are given below each cluster
figure; e.g., the nearest-neighbor pair (2P1) interaction is 1.0. Since this is a prototype system,
units are arbitrary in the sense that they have, naturally, energy units but they are not associated
with any particular system.

Using these ECIs, we can compute the enthalpy of formation, i.e. the energy of a given
configuration s referred to that of the concentration-weighted average of the pure components
(A and B),

�E(s) = E(s) − x E(A) − (1 − x)E(B), (11)

as a function of the atomic concentration x . We have plotted this quantity in figure 1(b) for 80
bcc-based ordered structures, including several special quasi-random structures [38–40]. Many
of the input structures have been used before in the analysis of Fe-based alloys [24, 37] and
some other bcc-based binary systems of Mo, Nb, Ta, and W [41]. Negative values of �E
indicate a trend to form ordered structures, whereas positive values mark unstable structures
against phase separation.
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Figure 1. (a) Cluster figures and effective cluster interactions used to generate the enthalpy
of formation modeling a simple prototype system—few predictors (cluster functions) with large
expansion coefficients. A cluster figure and its associated ECI are named as follows: the number
of vertices in the figure is written first, then its rank in that group according to the average bond
length; e.g., 2P3 stands for the third pair while 4P1 for the first four-body cluster. (b) Enthalpy
of formation obtained from the interactions defined in (a) when applied to a set of 80 bcc-based
ordered structures (see [24] for a description). The formation enthalpy for the random alloy is the
solid (red) line. Special quasi-random structures (with 16 atoms) are shown in solid circles.

It is not the objective of this paper to exhaustively search for all ground-state configurations
(as, for example, in [24, 37]). The random-alloy limit can be easily computed within the cluster-
expansion method since the average product of the occupation variables can be replaced by the
product average of such variables. The configurational average of the cluster functions �α

appearing in equation (3) can be written as

〈�α〉random = (2x − 1)|α| (12)

with |α| the number of sites (vertices) in cluster figure α. At low atomic concentration the
system separates into phases even when fully disordered—as seen from figure 1(b), where the
formation enthalpy of the random alloy is plotted (red line) together with the obtained values
for 16-atom special quasi-random structures (SQSs) [38–40].

We subjected the enthalpies of formation obtained from the ECIs described in figure 1
to the VCX methodology using a pool of 31 cluster figures encompassing pairs, triplets, and
quadruplets3. When the cluster pool is large enough, so that all relevant cluster figures are
included, the VCX method finds an expansion that reproduces accurately enough the input
database, i.e. selecting the relevant terms from the cluster pool by assigning them very small
weights whereas non-relevant cluster figures would have very large weights. Figure 2 shows
the evolution of the prediction error as we decimate (backward-reduction) the original cluster
pool. There are several points worth stressing here.

First, the VCX variationally samples the full expansion space associated with a given
cluster pool. For a 31-cluster pool, the number of possible expansions is 231 ∼ 109. The
VCX method selects the best expansion by optimizing the weight distribution in a variational

3 In all our tests, the outcome from the VCX did not depend on the cluster pool size as long as it contained all the
relevant terms. We show this particular set merely for convenience in presenting the data. Pools containing as many
as 60 clusters (spanning a space of 260 ∼ 1018 possible expansions) were tested without finding any difference from
smaller cluster sets.
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Figure 2. Prediction error as a function of the number of terms in the expansion. The correct (exact)
ECIs are recovered in the first step when Nc = 31 (point A) and remain the same down to point
B. Further decimation (backward reduction) of the pool increases the errors as shown in C–E. The
inset shows the actual numerical values of the ECIs from A to E as produced by the VCX.

way for a given cluster pool. Removing a cluster figure from the original set implies again the
entire optimization of the expansion space (now of size 230). In the next step, a pool of 29
cluster figures is then optimized (with an associated space of size 229), and so on. In general,
this optimization process is carried out for every cluster pool during the decimation process.

Second, the VCX finds the correct expansion in the first step. Both fitting and prediction
errors are zero for the entire pool (Nc = 31) and down to a decimated set of five cluster
figures—that is, all the optimal expansions between points A and B in figure 2. This implies that
either a single (correct) solution was found in the first step when the cluster pool had Nc = 31,
or that 27 different expansions with zero fitting and prediction errors were determined by the
VCX during the backward reduction. (We shall see below that the former case is indeed the
correct one.)

Third, the VCX and the decimation process produce robust expansions. The correct
solution is found in the first step when the original cluster figure pool is considered and
such expansion is maintained as long as the pool contains all the relevant terms. Moreover,
decimating the cluster pool beyond the five relevant cluster figures has little influence on the
actual values of the remaining ECIs as compared with the known (exact) ones. This is shown in
the lower panel of figure 2, where the numerical values of the ECIs are shown as we decimate
the cluster beyond the optimal expansion (i.e. from point C to E).

In figure 3 we have plotted the ECIs obtained when the entire (original) cluster pool is
optimized together with the associated weight distribution (lower panel). Relevant cluster
figures (and associated ECIs) are signaled by the shadowed bars. Notice that relevant terms
have finite ECIs and zero weights. Very large weights (zero ECIs), on the other hand, are
assigned to marginal cluster figures that otherwise would compromise the predictive power
of the expansion, whereas irrelevant cluster figures have naturally both ECIs and weights
equal to zero. It is important to emphasize that the correct (exact) expansion is obtained at
the first step even without any decimation procedure. This characteristic is present even in
more complex situations, as we will see below, thus confirming the VCX as a very efficient and
reliable method—the optimization of a pool of 31 clusters and 80 input structures, that is, the
determination of the correct cluster expansion, was virtually effortless.

3.2. Complex systems: many predictors with small and large coefficients

The complexity of a system, and therefore of its cluster expansion, depends on the number of
relevant terms (predictors or cluster functions) and on the value of the associated ECIs. The
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Figure 3. Effective cluster interactions as obtained from the VCX for a cluster pool with Nc = 31.
In the lower panel, we show the value of the weights associated with each ECI (and cluster figure).
Arbitrary units have been used for the values of the weights. Shadowed areas indicate nonzero ECIs
and their corresponding weights.

former point is easily and intuitively understood, i.e., the space of possible models (expansions)
grows exponentially with the number of terms in the expansion. The latter point, however, it is
a little bit more subtle and deserves some additional words.

The determination of an expansion characterized by terms with mixed (small and large)
values for the ECIs represents a difficult task if we aim to find all the relevant terms. Most
fitting strategies can pinpoint the cluster figures associated with large ECIs, whereas terms with
small ECIs can be easily misrepresented in the expansion. This means that, in general, a cluster
figure with a small ECI contributes little to the physical quantity being cluster expanded. It also
means that the contribution of such expansion terms with small ECIs can be either mimicked
by a combination of other cluster figures not included in the expansion or that the contribution
of such terms can be assimilated by the values of the ECIs associated with the cluster figures
already present in the expansion.

The robustness of a cluster expansion can be then defined on such ideas: a scheme capable
of retrieving all the relevant terms is therefore more robust than one that misses the terms with
small ECIs without mimicking their effect via the combination of additional cluster figures.
The least robust scheme is one that easily misses small ECIs and compensates the goodness of
fit by adding a number of unphysical (artificial) terms.

We have modeled a complex prototype bcc-based system with the cluster figures and ECIs
shown in figure 4(a). We have selected many-body cluster figures that are very likely to be
contained in moderate-sized cluster pools and, more importantly, that have shown up in several
real-alloy investigations [2, 3, 24, 37, 41]. The cluster figures, however, do not follow any
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Figure 4. (a) Cluster figures and effective cluster interactions of a complex bcc-based prototype
system, i.e. with many mixed (small and large) terms. The nomenclature is the same as in figure 1(a).
(b) Enthalpy of formation obtained from the interactions defined in (a) when applied to a set of 80
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Figure 5. Prediction error as a function of the number of terms in the expansion. The correct (exact)
ECIs are recovered in the first step when Nc = 38 (original cluster pool) and they stay the same
down to Nc = 10, where only the relevant cluster figures remain in the pool. Removing the 6P1
cluster figure (at Nc = 9) slightly increases the error.

compactness [1, 17] or invariance [18] criteria nor do their associated ECIs decay in any specific
way [2, 3, 16]. This is indeed a complex system for which the correct determination of ECIs
and cluster figures is a challenging task, especially for schemes based on the above-mentioned
criteria.

An input database was generated using such ECIs and cluster figures on the same set of
80 bcc-based ordered structures as we used in section 3.1 and [24]. The outcome can be seen
in figure 4(b) where the enthalpy of formation for the ordered structures (open circles) have
been plotted as a function of the atomic concentration. The (exact) formation enthalpy of the
random alloy is denoted by the solid (red) line and 16-atom SQSs are shown in solid circles
for comparison. As expected from the input interactions, the phase diagram exhibits rather
interesting and complex features: it is highly asymmetric and shows phase separation at one
concentration extreme whereas strong ordering tendencies are seen at the other concentration
end.

Subjecting the formation enthalpies of figure 4(b) to the VCX resulted in figure 5, where
the fitting and prediction errors are plotted as functions of the number of cluster figures in
the pool. The initial pool contained 38 elements encompassing cluster figures from pairs
to sextuplets (see footnote 3). The main characteristics observed in this figure were already
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present in the simple case discussed in section 3.1, i.e., the correct (exact) expansion was found
at the first step when the original cluster pool of 38 elements (spanning 238 ∼ 1011 possible
expansions) is considered. In other words, the correct ECIs were retrieved after optimizing the
original 38-cluster pool. This set of relevant cluster figures (and ECIs) was naturally maintained
during the decimation procedure until all the irrelevant and marginal clusters were sorted out
(at Nc = 10).

Further decimation of the pool resulted in an increase (from zero) of the fitting and
prediction errors. Among the ten possible clusters, the method selected the 6P1 cluster figure
as the term to be removed next, because in such a case the errors increased the least. The
remaining nine-term expansion showed virtually no change in the expansion coefficients. Even
when the expansion is further decimated down to five relevant terms (with errors of about unity),
the coefficients are still very close to the original values, i.e., 2P1 = 0.947, 2P7 = 0.269,
3P6 = 0.196, 3P10 = 0.572, and 4P4 = 0.132 (cf figure 4(a)).

4. Noisy databases

In this section, we shall address the effect of the numerical noise on the cluster expansions.
That is, we consider that F can be expanded as

F(s�) ≈ J0 +
Nc∑

p=1

Dp Jp�p(s�) + ε(s�) (13)

where ε represents an additive Gaussian noise characterized by a mean zero and standard
deviation σ . In the case of cluster expansions of multicomponent systems, imperfection arises
from only two distinct sources: an incomplete set of predictors (cluster functions) or numerical
noise in the input database. Although both cases are interesting on their own, we will focus on
the latter for the rest of the paper.

There are many investigations on the systematic errors and limitations of first-principles
calculations of materials, e.g. the over-binding of the local-density approximation or the over-
estimation of the magnetic energy by the generalized gradient approximation to the exchange
and correlation energy [42]. However, we are not aware of any study aiming to characterize the
distribution of numerical errors as they occur in actual situations and therefore our choice for a
Gaussian distribution.

4.1. Cluster expansions under Gaussian noise

A popular selection criterion is to choose an expansion with the least prediction error (as
estimated by cross-validatory techniques). This might be a good criterion when the input
database is noise free, i.e. the optimal expansion is the one with zero fitting and prediction errors
and with the least number of terms. However, when the database contains finite numerical
errors, the cross-validation estimate of the prediction error is biased for the subset models
(i.e. possible expansions contained in a finite cluster pool). This means that, in some instances,
the cross-validation score can be smaller than the actual noise in the database [30].

We added numerical (Gaussian) noise to the exact database of figure 1(b). The amount
of numerical noise is characterized by the standard deviation σ of the associated distribution.
Figure 6(a) shows the prediction and fitting errors as functions of the number of cluster figures
when σ = 0.43 and a 31-cluster pool is used in conjunction with the VCX method. The first
thing that strikes us from this figure is that, in contrast to its exact counterpart (figure 2), both
errors behave in a softer way, thus blurring the separation between relevant and non-relevant
(marginal and irrelevant) cluster figures. A second feature apparent from figure 6(a) is that
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Figure 6. (a) Fitting (circles) and prediction (squares) errors as functions of the number of terms in
the expansion. Numerical (Gaussian) noise, characterized by σ = 0.43, has been added to the input
database before subjecting it to the VCX. In the inset two possible expansions are marked, i.e. the
optimal expansion and the cross-validation selection. (b) Enthalpy of formation for the random
alloy as evaluated from the exact data (red), optimal (black) and cross-validation (green) selections.
Solid circles denote the 16-atom SQS.

both fitting and prediction errors can be far below the standard deviation of the input data
(σ = 0.43). Incidentally, this second characteristic exemplifies the efficiency and reliability of
the VCX: for a large enough cluster pool the method processes the input data so well that even
the numerical noise is well accounted for (in terms of both fitting and prediction).

Clearly, an expansion-selection scheme based only on estimates for the prediction error,
e.g. using cross-validatory techniques, can yield expansions with unphysical terms. In the inset
of figure 6(a) we have indicated what would be the cross-validation selection together with the
optimal (physical) expansion. The latter has been chosen as the smallest expansion satisfying
a secondary selection criterion of the form

min

∣∣∣∣
∑

k

(
Fk −

∑

p

Dp Jp�p(s�)
)2 − nσ

∣∣∣∣. (14)

An enthusiastic reader might point out that criterion (14) certainly produces consistent
expansions but that the physical nature of the expansion has to be judged by its compliance
with a certain physical limit. We fully agree with this view and, accordingly, we propose the
random alloy as the natural physical limit for a truly consistent cluster expansion. A fully
disordered alloy can be thought of as an ‘ordered’ structure with an infinite number of atoms,
so that every atomic position is randomly occupied and no long-range order is hence possible.

In figure 6(b) we compare the formation enthalpy for the random alloy as obtained from
the exact data (red line) with the two possible selections. Notice that the optimal selection—
notwithstanding that it contains fewer terms than the cross-validation selection—represents a
better approximation to the real (exact) one.

Admittedly, the difference between the two possible cluster expansions is rather small for
low levels of noise. Criterion (14) becomes pertinent when the database contains higher levels
of noise. The frontier separating relevant from non-relevant expansions widens with noise
and, without a secondary selection criterion, the selection process of a meaningful expansion
become arduous. This can be seen clearly in figure 7, where the input database has been
subjected to a noise of σ = 0.79, i.e. almost twice that in figure 6. The cross-validation
choice is now separated by almost a decade of possible expansions from the optimal expansion
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Figure 7. (a) Fitting (circles) and prediction (squares) errors as function of the number of terms in
the expansion. Numerical (Gaussian) noise, characterized by σ = 0.79, was been added to the input
database before subjecting it to the VCX. In the inset two possible expansions are marked, i.e. the
optimal expansion and the cross-validation selection. (b) Enthalpy of formation for the random
alloy as evaluated from the exact data (red), optimal (black) and cross-validation (green) selections.
Solid circles denote the 16-atom SQS.

as selected by the VCX in conjunction with equation (14). In figure 7(b) we can see that
the random-alloy limit is very well reproduced by the optimal selection whereas the cross-
validation choice strongly overestimates both the ordering and phase-separation tendencies at
high and low concentrations, respectively.

Therefore, the predictive power of an expansion, as estimated by cross-validatory
techniques, is not by itself a good physical criterion. Cluster expanding physical data using the
prediction error as the only guidance may result in expansions with unphysical (artificial) terms.
Meaningful cluster expansions can only be selected considering the numerical uncertainty in
the input database, for example, using equation (14).

4.2. The importance of the database

The concept of a cluster expansion of the configurational degrees of freedom of a physical
quantity is an important concept because of its viability: a converged expansion can be obtained
by retaining a finite number of relevant terms. Since the expansion coefficients are obtained
through a linear-inversion method (e.g. a least-squares fit), it is natural to think that only a few
input structures (of the order of the number of relevant cluster functions) should be necessary.
In general, however, this is not the case.

The idea of selecting the most appropriate set of input structures is, nevertheless, an
appealing one and some methods based on variance reduction have been proposed [1].
However, this is a very difficult task since the suitableness of such an input-set strictly depends
on the particular expansion (subset model) being considered. Although it may be possible
that a given structure-set is appropriate for more than one expansion, the enormous number of
possible expansions (see our early discussion in section 2.1.1) makes this ‘fine tuning of input
structures’ approach difficult to implement in practice. The size of the database plays, in the
end, an important role in determining a meaningful expansion.

Here, both simple and complex input databases will be analyzed in two variants:
the original database with 80 structures and a subset thereof containing 45 entries with
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Figure 8. ECIs for a simple prototype system under Gaussian noise. The actual interactions, for
both the full and half sets, are displayed with reference to the exact set (shadowed bars). The height
and the position of the bars denote the value of the ECI and its type; i.e., everything that falls
outside the shadowed bars points to ECIs associated with other cluster figures different from the
true ones. For σ < 0.20 the half set still contains enough information so that the exact ECIs are
always recovered (not shown). The inset in the lower panels depicts the noise-treated versus the
exact data for each noise level.

concentrations x � 0.5. We then treated both databases with different levels of Gaussian noise.
Clearly, a variety of other different sorting-down schemes can be entertained, e.g. random
selection or considering only structures close to the ground-state line. However, our pick
(hereafter the ‘half set’) has the advantage of being rather simple to define with the added
complexity of sampling only half of the concentration range. In any case, the conclusions
drawn from this section will be independent of the particular partitioning of the data.

Figure 8 shows the evolution of the ECIs as the noise level is increased. In all cases, the
methodology described so far was applied to select the best possible expansion. For low levels
of noise, that is, from σ = 0 to 0.12, the VCX recovered the exact cluster figures and ECIs for
both the full and half sets (not depicted in the figure). Differences between the two sets are first
found for moderated Gaussian noise of σ = 0.20: the ‘best’ expansion obtained for the half-set
(lower panels) is quite different from the real one, whereas for the full set (upper panels), the
VCX still yields the right answer. Eventually, when the noise level is high both input-data sets
fail to provide enough information and the true expansion cannot be recovered anymore.

This simple yet illustrative exercise underscores two all-important concepts: first, the
significance of having enough information (e.g. a large database) that a meaningful (physical)
cluster expansion can be performed. The efficiency of a selection scheme cannot replace the
need for enough information in the database. Second, the amount of information in a database
is not an absolute concept but a relative one, that depends on the level of noise, as it does on
the sampling of the configurational space, that is, on the input structures. As a consequence,
in order to produce meaningful (i.e. consistent and physical) expansions it is more important
to have a good database with moderate or even modest precision than to have scarce yet highly
accurate data.

5. Conclusions: the noise-filtering properties of cluster expansions

Traditionally, cluster expansions of first-principles data have been considered to be, in a
best-case scenario, as precise as the accuracy of the first-principles data they represent.
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Table 1. Optimal effective cluster interactions determined from the entire database (80
observations) as functions of the noise level. For the noise-free database, the true (exact) cluster
figures and their associated ECIs are recovered (cf figures 4(a)–5). For a finite level of noise up to
σ = 0.1, our methodology produces expansions that are virtually the exact ones. The robustness of
the VCX is exemplified for σ = 0.2, where the optimal expansion does not include the 6P1 term
yet it does not contain any further artificial terms. Notice that very noisy databases contain less
information, resulting in poor expansions. See the discussion in the text for further information.

Figure σ = 0 σ = 0.05 σ = 0.10 σ = 0.20 σ = 0.42 σ = 0.79

2P1 1.000 1.002 1.010 0.995 0.887 0.479
2P2 0.500 0.500 0.489 0.450 · · · · · ·
2P7 0.250 0.249 0.245 0.256 0.251 · · ·
2P11 0.333 0.334 0.333 0.348 0.281 · · ·
2P14 −0.200 −0.200 −0.199 −0.222 · · · · · ·
3P6 0.167 0.168 0.167 0.161 0.171 0.198
3P10 0.600 0.599 0.600 0.605 0.593 0.575
4P4 0.125 0.126 0.123 0.121 0.128 · · ·
5P2 0.311 0.304 0.316 0.325 0.299 · · ·
6P1 −0.100 −0.102 −0.080 · · · · · · · · ·
2P6 · · · · · · · · · · · · · · · 0.929
2P9 · · · · · · · · · · · · −0.148 −0.299
2P10′ · · · · · · · · · · · · · · · 0.321
2P13 · · · · · · · · · · · · · · · −0.499
2P13′ · · · · · · · · · · · · 0.104 0.243
2P15 · · · · · · · · · · · · · · · 0.118
4P1 · · · · · · · · · · · · · · · 0.233
4P3 · · · · · · · · · · · · · · · 0.189
6P2 · · · · · · · · · · · · · · · −0.086

In consequence, many popular schemes gauge the goodness of an expansion based on its
capabilities to reproduce some features of the original database, e.g. the ground states [1–3, 17].
Regardless of this being a good criterion or not, this example underscores the current emphasis
on cluster expansions, that is, in obtaining expansions with good fitting and prediction
capabilities of the ‘raw’ database, i.e. the physical data plus the numerical errors.

Inevitably, cluster expansions performed in such way lead to the configurational
description of numerical noise contained in the database. This manifests, typically, in
expansions with non-negligible and long-ranged ECIs associated with quite open cluster figures
(as seen in figure 8 and table 1). For simple systems, such artificial ECIs can be easily ruled out
and the appropriate description can be recovered. Nevertheless, even unsophisticated binary
alloys can embody a fair degree of complexity. For such complex materials, cluster expanding
the raw data would make it difficult to separate the effects of the numerical noise from the
physical effects, at the risk of attributing some physical meaning to the former.

The results presented in this paper have shown the importance of broadening our view of
cluster expansions to account explicitly for the effects of the numerical noise in the database.
Our investigation has revealed that cluster expansions act as noise filters. This unexpected
and remarkable feature has a deep impact on the way we approach the modeling of materials
properties and how we construct future databases. The emphasis should be now on the amount
of information contained in the database and on the consistency of the expansion. This implies
the analysis and characterization of the numerical noise in the ab initio database.

Finally, in this paper we have used the VCX method as our working tool. However,
qualitative and even some quantitative aspects must be present in any unbiased approach to the
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cluster expansion. Notably, we expect that the genetic algorithm of Hart and co-workers [2, 3]
displays the same noise-filtering behavior as reported here.
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Appendix. Prediction error and cross-validation

A model (an expansion) is judged by its ability to reproduce the data on which it is based and,
more importantly, by its forecasting proficiency. The predictive ability of the associated fitted
model can be characterized using the moments of V̂ (a p-vector estimator of V in equation (5)).

Suppose that � f is a known p-vector and that Ff is an observation (measurement)
consistent with model (5) and independent of V̂ . Under these circumstances, F f can be
considered as a future observation (measurement). The predicted value of Ff based on the
selected model is then F̂ f = � f V̂ and the error in prediction is Ff − F̂ f . Therefore, the
predictive power of the model is reflected by the statistical properties of Ff − F̂ f for different
choices of � f . Ideally, one would like to obtain the distribution function of Ff − F̂ f , but this
is unrealistic in most cases. Instead, the mean-squared error is usually used as a summary.

Performing additional observations for the phenomenon in question is always advisable,
but in general this is not always possible either because the observation conditions may have
changed or because it represents unbearable costs. In such cases, it is therefore quite natural
to consider partitioning the available data into ‘construction’ and ‘validation’ sets. The former
is used to select a model that, in turn, is assessed using its predictions against the latter set. A
possible objection to using the splitting of the database is the loss of information. However,
in moderate and large data sets, where the splitting is more practical, this cost is typically
negligible [28] (see section 3).

The cross-validation scheme removes the arbitrariness in the division of the data (of size n)
by considering a construction sample of size n − 1 and a validation sample of size 1 in all the n
possible ways [43–45]. Certainly, different partitions of the data can be entertained, e.g. leaving
r terms out for the validation subsample and building the model with a construction subsample
of size n − r [29, 46]. For the purposes of this paper, the very popular leave-one-out cross-
validation is satisfactory enough and it will be used throughout the rest of the paper. Different
data-splitting strategies have been reviewed in [29, 46] and some of them are tested in [3] in
the context of cluster expansions.

Cross-validation is a method for model selection in terms of the predictive ability of the
models. In terms of model (5), the squared prediction error in the leave-one-out cross-validation
can be written as

�CV
γ = 1

n

n∑

i=1

(
Fi − �γ V i

γ

)2
, (A.1)

where �γ is the predictor associated with a (sub-) model of size qγ and V i
γ is the corresponding

least-squares estimator of equation (5) when the observation i is not in the construction
subsample. An optimal model can be selected on terms of the prediction error and the number
of predictors. This is a very popular criterion in the context of cluster expansions.
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[24] Dı́az-Ortiz A, Drautz R, Fähnle M, Dosch H and Sanchez J M 2006 Phys. Rev. B 73 224208
[25] Linhart H and Zucchini W 1986 Model Selection (New York: Wiley)
[26] Miller A J 1990 Subset Selection in Regression (London: Chapman and Hall)
[27] McQuarrie A D R and Tsai C-L 1998 Regression and Time Series Model Selection (Singapore: World Scientific)
[28] Picard R R and Cook R D 1984 J. Am. Stat. Assoc. 79 575
[29] Shao J 1993 J. Am. Stat. Assoc. 88 486
[30] George E I 2000 J. Am. Stat. Assoc. 95 1304
[31] Rao C R and Wu Y 2001 Institute of Mathematical Statistics Lectures Notes (Monograph Series vol 38) p 1
[32] Hart Gus L W 2006 private communication
[33] Chatfield C 1995 J. R. Stat. Soc. A 158 419
[34] Yuan Z and Yang Y 2005 J. Am. Stat. Assoc. 100 1202
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